# Hands-On Training 5

# Predicting the Nonlinear Loudspeaker Behavior

# 1 Objectives of the Hands-on Training

- Modeling of the loudspeaker behavior in the large signal domain
- Solving the differential equation in the time domain for arbitrary sinusoidal stimuli
- Evaluation of design choices by virtual variation of the loudspeaker nonlinearities
- Relationship between nonlinear symptoms and loudspeaker parameters
- Interpretation of loudspeaker measurements (Loudspeaker diagnostics)

# 2 Requirements

# 2.1 Previous Knowledge of the Participants

It is recommended to do the previous Klippel Trainings before starting this training.

# 2.2 Minimal Requirements

Participants will need the results of the measurement provided in a Klippel database *Training 5 Predicting the Nonlinear Loudspeaker Behavior.kdbx*. A complete setup of the KLIPPEL measurement hardware is not necessary. The data may be viewed by downloading *dB-Lab* from <a href="www.klippel.de/training">www.klippel.de/training</a> and installing the software on a Windows PC.

# 2.3 Optional Requirements

If participants have access to a KLIPPEL R&D Measurement System, we recommend performing additional measurements on transducers provided by the instructor or other participants. In order to perform these measurements, you will also need the following software and hardware components:

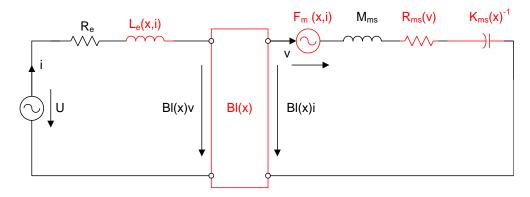
- Large Signal Identification Module (LSI)
- Distortion Module (DIS)
- Simulation Module (SIM)
- Distortion Analyzer DA2
- Laser Sensor + Controller
- Amplifier
- Driver Stand

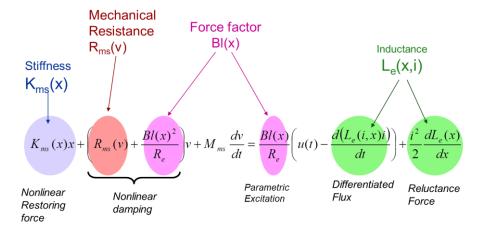
# 3 The Training Process

- 1. Read the theory that follows to refresh your knowledge required for the training.
- 2. Watch the demo video to learn about the practical aspects of the measurement.
- 3. Answer the preparatory questions to check your understanding.
- 4. Follow the instructions to interpret the results in the database and answer the multiple-choice questions off-line.
- 5. Check your knowledge by submitting your responses to the anonymous evaluation system at www.klippel.de/training.
- 6. Receive an email containing a **Certificate with high distinction, distinction or credit** (depending on your performance).
- 7. Perform some optional measurements on transducers if the hardware is available.

# 4 Introduction

At low frequencies where the wavelength is large compared to the dimensions of the transducer, the electromechanical system can be modeled by the lumped parameter model shown in Figure 1.





Figure 1: Electro-mechanical transducer represented as an electrical equivalent circuit using linear and nonlinear parameters represented as black and red elements

This equivalent circuit comprises linear and nonlinear parameters as shown in Table 1 below:

| $R_{ m e}$                           | electrical resistance of the voice coil                                            |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| $L_{\rm e}(x,i)$                     | electrical inductance of the voice coil depending on voice coil displacement x and |  |  |  |
|                                      | input current i                                                                    |  |  |  |
| Bl(x)                                | force factor of the electro-dynamical motor depending on voice coil displacement x |  |  |  |
| $F_{\rm m}(x,i)$                     | reluctance force caused by displacement varying inductance $L_e(x)$ depending on   |  |  |  |
|                                      | displacement and current                                                           |  |  |  |
| $K_{\rm ms}(x) = C_{\rm ms}(x)^{-1}$ | Stiffness (inverse of the compliance) of the mechanical suspension depending on    |  |  |  |
|                                      | displacement x                                                                     |  |  |  |
| $M_{ m ms}$                          | Moving mass of all mechanical parts including air load                             |  |  |  |
| $R_{\rm ms}(v)$                      | Mechanical and acoustical losses varying with voice coil velocity <i>v</i>         |  |  |  |

Table 1: Lumped parameters description

The linear parameters are constant (e.g. mass  $M_{\rm ms}$ ), independent of the state of the system, and well known from the linear modeling (see Training 1). The nonlinear parameters (e.g. Bl(x)) are nonlinear functions that depend on the instantaneous state of the system such as the displacement x, current i and velocity v. Figure 2 shows the nonlinear integro-differential equation of the electro-mechanical transducer based on the lumped parameter model in Figure 1.



# Figure 2: Nonlinear effects in the integro-differential equation of the electro-mechanical transducer under voltage supply

The left side shows the sum of restoring force, inertia and the damping force corresponding with the mechanical stiffness  $K_{\rm ms}$ , mechanical resistances  $R_{\rm ms}(\nu)$  and moving mass  $M_{\rm ms}$  connected in series, as shown in Figure 1. If the transducer is operated via an amplifier having a low output impedance, the total damping depends on the electrical damping related to the nonlinear dependency  $Bl(x)^2/R_{\rm e}$  versus voice coil displacement x. The nonlinear force factor Bl(x) also causes a variation of the electro-dynamical excitation on the right-hand side of the equation.

The inductance  $L_e(x, i)$  has also two nonlinear effects. It causes a variation of the electrical input current at high frequencies, where the self-inductance contributes significantly to the electrical input impedance. The second nonlinear effect is the reluctance force, generating an additional excitation of the mechanical system if the local derivative of the inductance does not vanish (and inductance  $L_e(x) \neq \text{constant}$ ).

The nonlinear integro-differential equation reveals products comprising a nonlinear parameter and a state variable. Both the nonlinear parameter and the state variable are varying with time. This multiplication of time-varying signals causes harmonic and intermodulation distortion and other nonlinear symptoms.

#### 5 Generation of nonlinear distortion

The restoring force  $F_{\text{res}} = K_{\text{ms}}(x)x$  may be described as the product of displacement x and nonlinear stiffness  $K_{\text{ms}}(x)$ . For example, voice coil displacement containing two sinusoidal tones at frequency  $\omega_1$  and  $\omega_2$  can be described by the equation:  $x(t) = X_1 \cos(\omega_1 t) + X_2 \cos(\omega_2 t)$ .

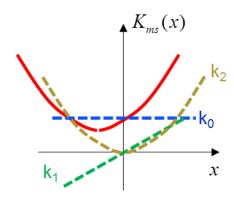



Figure 3: Power series expansion of the stiffness asymmetry

using a truncated power series of the stiffness  $K_{\text{ms}}(x)$ :  $K_{\text{ms}}(x) = \sum_{n=0}^{\infty} k_n x^n = k_0 + k_1 x + k_2 x^2 + \dots$ 

Thus, the restoring force is:

$$\begin{split} F_{\text{res}}(t) &= K_{\text{ns}}(x)x = k_0x + k_1x^2 + k_2x^3 + \dots \\ &= \frac{k_1}{2}(X_1^2 + X_2^2) \qquad dc - component \\ &+ (k_0X_1 + \frac{3}{4}k_2X_1^3)\cos(\omega_1t) + (k_0X_2 + \frac{3}{4}k_2X_2^3)\cos(\omega_2t) \qquad fundamentals \\ &+ \frac{k_1}{2}\Big[X_1^2\cos(2\omega_1t) + X_2^2\cos(2\omega_2t)\Big] \qquad 2nd - order \ harmonics \\ &+ \frac{k_2}{4}\Big[X_1^3\cos(3\omega_1t) + X_2^3\cos(3\omega_2t)\Big] \qquad 3rd - order harmonics \\ &+ k_1\big[X_2X_1\cos((\omega_2-\omega_1)t) + X_2X_1\cos((\omega_2+\omega_1)t)\big] \\ &+ k_2\big[X_2X_1^2\cos((2\omega_1-\omega_2)t) + \dots + X_2X_1^2\cos((2\omega_1+\omega_2)t)\Big] \\ &+ \dots \end{split}$$

#### **Equation 1**

The coefficient  $k_0$  describes the value of the stiffness  $K_{\text{ms}}(x)$  at the rest position x = 0, as illustrated in Figure 3. The constant part appears only in the fundamental components of the restoring force at frequencies  $\omega_1$  and  $\omega_2$  and corresponds with the T/S parameter used in traditional linear modeling.

The coefficient  $k_1$  in the linear term of the power series of the stiffness  $K_{ms}(x)$  generates a dc component in the displacement,  $2^{nd}$ -order harmonic distortion at twice the excitation frequencies  $2\omega_1$  and  $2\omega_2$ , and  $2^{nd}$ -order intermodulation products at the summed and difference frequencies.

The coefficient  $k_2$  weighting the quadratic term generates  $3^{\text{rd}}$ -order harmonics at  $3\omega_1$  and  $3\omega_2$  and a multitude of intermodulation components at all combination frequencies. The coefficient  $k_2$  also generates a nonlinear contribution to the fundamental components at the original excitation frequencies.

The amplitudes of the  $2^{nd}$  and  $3^{rd}$ -order distortion components follow a quadratic and cubic law of the amplitudes  $X_1$  and  $X_2$ , respectively. Therefore, the distortion components are negligible if the amplitudes  $X_1$  and  $X_2$  of the displacement are sufficiently small. If the amplitudes  $X_1$  and  $X_2$  are frequency independent, then the amplitudes of the distortion components in the restoring force are independent of the frequencies  $\omega_1$  and  $\omega_2$ . Equation 1 describes a static nonlinear system having no memory and generating an instantaneous output  $F_{res}(t)$  for any input signal x(t).

However, voice coil displacement in loudspeakers and other electro-dynamical transducers has a low-pass characteristics and the amplitudes  $X_1(\omega_1)$  and  $X_2(\omega_2)$  are only constant below resonance frequency  $f_s$ . It decreases by 12 dB per octave at higher frequencies. Thus, the nonlinear components in the restoring force  $F_{\text{res}}(t)$  may be considered as additional distortion exciting the mechanical system and generating a feedback loop, as shown in Figure 4.

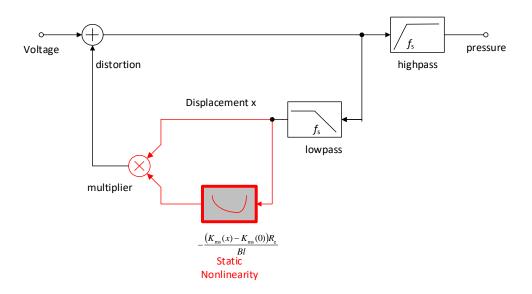



Figure 4: Signal flow chart describing the effect of the nonlinear stiffness  $K_{ms}(x)$ 

The signal flow chart above separates two linear subsystems from the static nonlinearity generating only the nonlinear distortion. The low-pass generating the voice coil displacement prior to the static nonlinearity can be considered to be a pre-filter while the high-pass in Figure 4 behaves as a post-filter shaping the distortion components generated in the static nonlinearity.

In the small signal domain, where the voice coil displacement is small, the output of the multiplier is also small compared to the input voltage and the distortion generated by the nonlinear feedback path can be neglected. Thus, the transducer behaves like a linear high pass between voltage input and sound pressure output.

In the large signal domain the distortion at the output of the multiplier is the same order of magnitude as the input voltage and causes a nonlinear compression effect at low frequencies.

Figure 5 is a more general representation of Figure 4 and can also be applied to other nonlinearities found in the nonlinear differential equation.

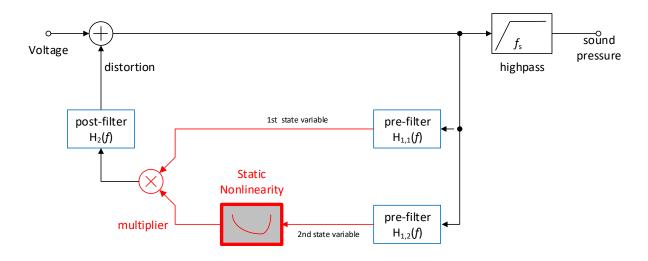



Figure 5: Generalized signal flow chart modeling the generation of nonlinear distortion by a single loudspeaker nonlinearity

Not only the force factor nonlinearity Bl(x), but also the inductance  $L_e(x, i)$  requires the multiplication of two different state variables (displacement x and current i). The generation of the nonlinear distortion in the self-induced voltage by  $L_e(x, i)$  requires a differentiation of the magnetic flux which corresponds to the additional post filter  $H_2(f)$  after the output of the multiplier. While the displacement x is generated by a low pass with a cut-off at the loudspeaker's resonance frequency  $f_s$ , the generation of the current requires a stop-band filter attenuating the signal at  $f_s$ .

The static nonlinearities are part of a feedback loop in Figure 5. This is important for the generation of higher-order distortion components. Even if the static nonlinearity is represented by a power series expansion truncated after the linear term (represented by coefficient  $k_1$  only), the static nonlinearity produces higher-order components in each loop.

# 6 Properties of the subfilters for the most important nonlinearities

Table 2 summarizes the most important loudspeaker nonlinearities. The properties of the linear pre- and post-filters are described by typical filter characteristics (band-pass, high-pass, low-pass...) to generate the first and second state variables which are multiplied with each other in the static nonlinearity.

| NONLINEARITY                                     | INTERPRETATION                                | PRE-FILTER H <sub>1,1</sub> (f) (output) | PRE-FILTER H <sub>1,2</sub> (f) (output) | POST-FILTER<br>H <sub>2</sub> (f) |
|--------------------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|
| Stiffness $K_{ms}(x)$ of the suspension          | Restoring force                               | Low-pass<br>(displacement <i>x</i> )     | Low-pass<br>(displacement <i>x</i> )     | 1                                 |
| Force factor <i>Bl</i> ( <i>x</i> )              | Electro-dynamical force                       | Band-stop<br>(current /)                 | Low-pass (displacement x)                | 1                                 |
|                                                  | Nonlinear damping                             | Band-pass<br>(velocity <i>v</i> )        | Low-pass (displacement <i>x</i> )        | 1                                 |
| Inductance $L_{c}(x)$                            | Self-induced voltage                          | Band-stop<br>(current /)                 | Low-pass (displacement <i>x</i> )        | Differentiator                    |
|                                                  | Reluctance force                              | Band-stop<br>(current <i>i</i> )         | Low-pass<br>(displacement <i>x</i> )     | 1                                 |
| Inductance L <sub>e</sub> (i)                    | Varying permeability                          | Band-stop<br>(current /)                 | Band-stop<br>(current <i>i</i> )         | Differentiator                    |
| Mechanical resistance $R_{\rm ms}(\nu)$          | Nonlinear damping                             | Band-pass (velocity $\nu$ )              | Band-pass<br>(velocity <i>v</i> )        | 1                                 |
| Young's modulus $E(\varepsilon)$ of the material | Cone vibration                                | Band-pass<br>(strain ε)                  | Band-pass<br>(strain ε)                  | 1                                 |
| Speed of sound c(p)                              | Nonlinear sound propagation (wave steepening) | High-pass (sound pressure <i>p</i> )     | High-pass (sound pressure <i>p</i> )     | Differentiator                    |
| Time delay τ( <i>x</i> )                         | Nonlinear sound radiation<br>(Doppler effect) | High-pass (sound pressure <i>p</i> )     | Low-pass<br>(displacement x)             | Differentiator                    |

Table 2: Properties of the pre-filters  $H_{1,1}(f)$  and  $H_{1,2}(f)$  and the post-filter  $H_2(f)$  for the most important loudspeaker nonlinearities

The particular properties of pre- and post-filters in connection with the high-pass in the linear path cause the dynamic nonlinear behavior of the transducer and particular frequency response of the distortion components.

# 7 Prediction of the Large Signal Behavior

The results of the theoretical modeling (differential equation in Figure 1) and modern identification techniques for measuring transducer parameters are the basis for simulating the vibration and radiation in the small and large signal domain.

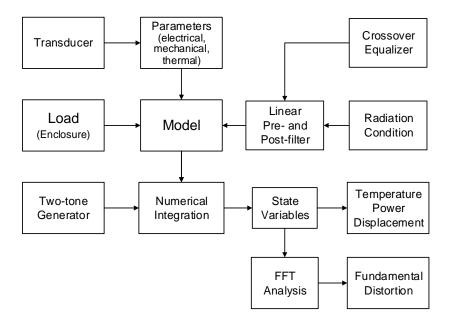



Figure 6: Overview on the large signal simulation of electro-dynamical transducer

Figure 6 shows a signal flow chart of the simulation software using the lumped parameters of the transducer and enclosure as inputs. Linear transfer functions are used for considering a complex load (e.g. a horn) connected to the transducer besides the pre-shaping by an electrical crossover and the post-shaping by sound propagation. The differential equation in Figure 1 is solved by numerical integration in the time domain giving access to all state variables such as displacement, current, sound pressure, voice coil temperature and power as well. A spectral analysis (FFT) applied to the state variables provides the amplitude response of fundamental, dc component, harmonic and intermodulation distortion for a sinusoidal two-tone stimulus. This tool can be used as an interactive textbook to understand the relationship between loudspeaker nonlinearities and their symptoms.

# **8 Preparatory Questions**

Check your theoretical knowledge before you start the regular training. Answer the questions by selecting all correct responses (sometimes, there will be more than one).

- **QUESTION 1:** The coefficient  $k_1$  in the power series expansion of the stiffness  $K_{ms}(x)$  in Equation 1 generates an asymmetrical shape of the stiffness curve and a dc component in the restoring force F as shown in Figure 3. Under which condition does the asymmetrical stiffness produce a dc component in the sound pressure output at a listening position in the far field?
  - □ MC a: There are no conditions under which we find a dc component in the sound pressure output. The high-pass filter in the linear path in Figure 4 blocks the dc component.
  - □ MC b: If we find a dc component in the voice coil displacement we will also find a dc component in the sound pressure output.
- **QUESTION 2:** Is it possible to compensate all signal distortion generated by force factor nonlinearities by an appropriately selected curve shape of the stiffness nonlinearity?
  - □ MC a: Yes, because all important nonlinearities in loudspeakers can be represented by the same generalized model in Figure 5.

- MC b: No, because the pre-filter  $H_{1,1}(f)$  and  $H_{1,2}(f)$  in the generalized model in Figure 5 have different frequency responses. Thus, it is only possible to compensate force factor distortion at one particular frequency but not for an ordinary audio signal comprising multiple spectral components.
- MC c: No, because the stiffness  $K_{ms}(x)$  has only one nonlinear effect (restoring force) multiplying the state variable displacement x with displacement x, but the force factor Bl(x) generates two nonlinear effects (damping: multiplying state variable displacement x with velocity v, and excitation: multiplying the state variable displacement x with current i).
- **QUESTION 3:** A loudspeaker has only a  $K_{ms}(x)$  nonlinearity with a perfectly symmetrical curve shape corresponding to a power series expansion truncated after the quadratic term with  $(k_1 = 0 \text{ and } k_2 > 0)$ . What kind of distortion components are generated in the sound pressure output?
  - $\square$  MC a: Only 2<sup>nd</sup>-order harmonic and intermodulation distortion because the  $K_{ms}(x)$  contains a quadratic term only.
  - $\square$  MC b: Only 3<sup>rd</sup>-order harmonic and intermodulation distortion because the restoring force F contains a cubic term of the displacement.
  - □ MC c: All odd-order harmonic and intermodulation distortion and a nonlinear component at the fundamental frequency because the quadratic term in the power series expansion gives a cubic term in the nonlinear restoring force *F* which generates primarily 3rd-order distortion. However, the further higher-order components (5<sup>th</sup>, 7<sup>th</sup> ...) are generated by feeding back the distortion to the static nonlinearity and multiplying them with the squared displacement.
  - □ **MC d:** All higher order distortion (2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup>, 5<sup>th</sup> ...) because the output of the static nonlinearity is feedback to the input.

# 9 Measurement tasks with database

- Step 1: View the demo movie *Predicting the Nonlinear Loudspeaker Behavior* provided at <a href="www.klippel.de/training">www.klippel.de/training</a> to see how a practical simulation is performed.
- Step 2: Run the Software dB-Lab and open the file Training 5\_Predicting the Nonlinear Loudspeaker Behavior.kdbx

Advice: It is recommended to do the following exercises offline and to note the answers of the multiple choice questions on a paper!

#### 9.1 Harmonic Distortion Simulations

Step 3: Select the operations 2a DIS X Fund., DC, Short - which shows the measured voice coil displacement versus frequency at four different voltages spaced logarithmically between 1 V and 6 V with a short stimulus – and compare the results windows "Peak + Bottom", "DC Component", and "Compression" with the corresponding result windows in the operation 2b SIM linear – which shows the results of the linear modelling of the voice coil displacement for the same stimulus.

- **QUESTION 4:** What causes the differences between measurements and linear modeling?
  - □ MC a: The linear model cannot consider the compression of the fundamental component.
  - □ MC b: The linear model predicts the displacement above resonance frequency too high.
  - □ MC c: The laser sensor generates a dc displacement in the measured output signal which is not generated by the loudspeaker under test.
  - □ MC d: The laser sensor limits the peak displacement at low frequencies but the voice coil displacement of the loudspeaker is not affected.
  - □ MC e: The loudspeaker generates a positive dc displacement in the displacement which is maximal at resonance frequency.
- Step 4: Open the result window "Bl(x)" in the operation 2c SIM all nonlinearities. The black curve Covered by SIM shows the Bl variation during the simulation. Use the cursor to read the minimal Bl value generated by the stimulus and calculate the minimal force factor ratio  $(Bl_{min} = Bl(x_{peak})/Bl(x = 0)*100\%)$  according during the simulation!
- Step 5: Open the result window "State" in operation all large la
- **QUESTION 5:** Does the difference between these two values affect the accuracy of the simulation?
  - $\square$  MC a: Yes, the  $Bl_{\min}$  ratio in the LSI is larger than the  $Bl_{\min}$  in the simulation. Thus the maximal peak displacement calculated in SIM is larger than the maximal displacement generated during the nonlinear parameter measurement. The SIM extrapolates the curve shape at higher displacement by using the Taylor series expansion. The user of the SIM has to check the curve shape and to ensure that the extrapolation is meaningful.
  - $\square$  MC b: No, the  $Bl_{\min}$  ratio in the LSI is smaller than the  $Bl_{\min}$  in the simulation and the curve shape of all nonlinearities is correctly identified in displacement range used in the simulation.
- Step 6: Compare the result window "Peak + Bottom" in the operation 2c SIM all nonlinearities with the corresponding curve in the Operation 2a DIS X Fund., DC, Short. The agreement between measured and simulated displacement is an important criterion for the accuracy for the nonlinear modelling.
- **QUESTION 6:** Why is the agreement between measured and simulated displacement so important?
  - MC a: The dominant loudspeaker nonlinearities Bl(x), L(x),  $K_{ms}(x)$  depend on the voice coil displacement x. A small error in the estimated displacement has a significant influence on the distortion generation process (because there is a nonlinear relationship between input and output of the nonlinearities).
  - $\square$  MC b: The voice coil displacement may contain the dc component generated by asymmetries in Bl(x), L(x),  $K_{ms}(x)$  which shifts the working point dynamically. The dc displacement has a significant influence on the distortion generation process but cannot be detected in the sound pressure measurement.
  - □ MC c: The absolute measurement of voice coil displacement is a critical criterion for the evaluation of the modeling because this measurement can be performed at a higher accuracy than the absolute measurement of the sound pressure output. Acoustical measurements require careful consideration of the radiation condition (e.g. baffle), sound propagation (e.g. distance) and influence of the acoustical environment (room).

- Step 7: Open the operation 2d SIM  $Ext{Rms}(x)$  only where the nonlinear stiffness  $Ext{Rms}(x)$  is activated but all other nonlinearities are disabled and compare the curves in the result windows "DC Component" and "Compression" with the corresponding curves simulated by  $Ext{2c}$  SIM all nonlinearities considering the contribution of all nonlinearities and the linear modeling in  $Ext{2c}$  SIM linear.
- **QUESTION 7:** What kind of nonlinear effects found in the simulation 2c SIM all nonlinearities are significantly influenced by  $K_{ms}(x)$  nonlinearity?
  - $\Box$  MC a: compression of the fundamental component at resonance frequency (f = 82 Hz)
  - $\square$  MC b: compression of the fundamental component below resonance frequency (f < 82 Hz)
  - $\square$  MC c: dc displacement at low frequencies (f < 82 Hz)
  - $\square$  MC d: dc displacement at the resonance frequency (f = 82 Hz)
  - $\Box$  MC e: dc displacement at high frequencies (f > 200 Hz)
- QUESTION 8: The dc offset of the transducer with the nonlinear stiffness as shown in the window "Kms(x)" in operation 2d SIM Kms(x) only is always positive. What is the reason for this?
  - □ MC a: The suspension in the particular simulation has a lower stiffness for positive displacement than for negative displacement and generates a positive dc displacement for any AC displacement.
  - $\square$  MC **b:** All loudspeaker suspensions generate a positive dc displacement independent of the shape of the nonlinear  $K_{\text{ms}}(x)$  curve.
- Step 8: Compare the result windows "Peak + Bottom", "DC Component" and "Compression" from Operations 2e SIM Bl(x) only and 2c SIM all nonlinearities and the linear modeling in 2b SIM linear.
- **QUESTION 9:** What kind of nonlinear effects found in the simulation 2c SIM all nonlinearities are significantly influenced by Bl(x) nonlinearity?
  - $\square$  MC a: compression of the fundamental component at resonance frequency (f = 82 Hz)
  - $\Box$  MC b: compression of the fundamental component below resonance frequency (f < 82 Hz)
  - $\square$  MC c: dc displacement at low frequencies (f < 82 Hz)
  - $\square$  MC d: dc displacement at the resonance frequency (f = 82 Hz)
  - $\square$  MC e: dc displacement at high frequencies (f > 82 Hz)
- Step 9: For a transducer with dominant asymmetry in the Bl characteristic the dc component changes the sign at the resonance frequency  $f_s$  (here at 82 Hz). Compare the sign of the "DC Component" with the shape of the Bl(x) curve in the result window "Bl(x)" in operation 2e SIM Bl(x) only.
- **QUESTION 10:** Which property of the dc displacement generated by Bl(x) nonlinearity is correct?
  - $\square$  MC a: The dc generated at low frequencies ( $f < f_s$ ) shifts the coil away from the Bl maximum.
  - $\Box$  MC b: The dc generated at low frequencies ( $f < f_s$ ) shifts the coil towards the Bl maximum.
  - $\square$  MC c: The dc generated at high frequencies  $(f > f_s)$  shifts the coil away from the Bl maximum.
  - $\square$  MC d: The dc generated at high frequencies  $(f > f_s)$  shifts the coil towards the Bl maximum.
  - **MC e:** The isolated Bl(x) nonlinearity doesn't generate a dc component at resonance frequency  $f_s$  (here at 82 Hz).

- **QUESTION 11:** Which explanation for the generation of the dc displacement by force factor nonlinearity is correct?
  - MC a: The dc component is generated by the excitation force F = Bl(x)i where the electrical current i is multiplied with a function of voice coil displacement x. At the resonance frequency there is a 90 degree phase shift between electrical current i and the displacement x and the multiplication produces no dc component in the long-term sense like the correlation of orthogonal signals.
  - $\square$  MC b: The dc component is generated by the nonlinear damping where the velocity and displacement are multiplied with each other. There is a 90 degree phase shift between velocity and the displacement x and the multiplication produces no dc component like the correlation of orthogonal signals.
- Step 10: Open the operation  $\bigcirc$  2f SIM L(x) only and compare the curves "DC Component" and "Compression" with the corresponding curves simulated by  $\bigcirc$  2c SIM all nonlinearities considering the contribution of all nonlinearities and the linear modeling in  $\bigcirc$  2b SIM linear.
- **QUESTION 12:** What kind of nonlinear effects found in the simulation 2c SIM all nonlinearities are significantly influenced by L(x) nonlinearity and are useful symptoms for loudspeaker diagnostics?
  - $\square$  MC a: compression of the fundamental component at resonance frequency (f = 82 Hz)
  - $\Box$  MC b: compression of the fundamental component below resonance frequency (f < 82 Hz)
  - $\Box$  MC c: dc displacement at low frequencies (f < 82 Hz)
  - $\square$  MC d: dc displacement at the resonance frequency (f = 82 Hz)
  - $\Box$  MC e: dc displacement at high frequencies (f > 82 Hz)
- Step 11: For a transducer with dominant asymmetry in the inductance L(x) characteristic the dc component has a characteristic frequency response. Compare the sign of the dc with the shape of the L(x) curve in the result window "L(x)" in operation 2 f SIM L(x) only.
- **QUESTION 13:** Which explanation(s) is (are) correct?
  - $\square$  MC a: The dc component generated by the L(x) nonlinearity does not change with frequency.
  - $\square$  MC b: The dc component generated by the L(x) nonlinearity moves the coil towards the maximum of the inductance.
  - $\square$  MC c: The dc component generated by the L(x) nonlinearity moves the coil away from the maximum of the inductance curve.
  - $\square$  MC d: The dc component generated by L(x) nonlinearity has a local minimum at the resonance frequency where the amplitude of the voice coil current is also minimal.
  - $\square$  MC e: The L(x) nonlinearity generates the largest dc component at the resonance frequency fs.
- Step 12: Open the operation 2g SIM L(i) only and compare the curves in the result windows "Peak + Bottom", "DC Component" and "Compression" with the corresponding curves in the operation 2c SIM all nonlinearities and the linear modelling in 2b SIM linear.
- **QUESTION 14:** What kind of nonlinear effects found in the simulation 2c *SIM all nonlinearities* are influenced by L(i) nonlinearity?
  - $\Box$  MC a: compression of the fundamental component at resonance frequency (f = 82 Hz)
  - $\Box$  MC b: compression of the fundamental component below resonance frequency (f < 82 Hz)
  - $\Box$  MC c: dc displacement at low frequencies (f < 82 Hz)
  - $\Box$  MC d: dc displacement at the resonance frequency (f = 82 Hz)
  - $\Box$  MC e: dc displacement at high frequencies (f > 82 Hz)

- Step 13: Open the operation 3a DIS SPL Harmonics and compare the curves in the result window "Fundamental" with the corresponding curves in the operation 3b SIM all nonlinearities considering the contribution of all nonlinearities.
- **QUESTION 15:** What causes the discrepancies between measured and simulated response of the fundamental component?
  - $\square$  MC a: Break-up modes on the cone at high frequencies are not considered in the simulation. The sound radiation in the simulation is based on a lumped parameter model assuming a rigid cone of surface area  $S_D$ .
  - MC b: The peaks and dips found in the measured SPL response cannot be explained by the model because no accurate input parameter is provided for the moving mass  $M_{ms}$ .
  - MC c: The peaks and dips found in the measured SPL response cannot be explained by the model because no accurate input parameter is provided for the inductance  $L_e$ .
- Step 14: Open the result window "Fundamental + Harmonics" of the operations 3a DIS SPL Harmonics and 3b SIM all nonlinearities and compare the measured and simulated amplitude responses of the  $2^{nd}$  Harmonic and  $3^{rd}$  Harmonics.
- **QUESTION 16:** Although there is a good agreement between simulation and measurement at low frequencies (below 150 Hz) there are some discrepancies at higher frequencies. What is (are) the physical cause(s)?
  - □ MC a: At high frequencies the loudspeaker cone does not vibrate as rigid piston anymore. The break-up modes in the cone generate high local displacement somewhere on the cone which is an additional source of nonlinear distortion which is not considered in the simulation.
  - □ MC b: The measurement reveals a fundamental response (shown as red curve) which is not flat above 1 kHz but reflects the partial vibration of the cone's surface and the particular radiation condition. This frequency response also affects the mechanical vibration and acoustical radiation of the harmonic components and results in a post-shaping of the distortion components.
  - □ MC c: The deviation in the 2<sup>nd</sup> and 3<sup>rd</sup> order distortion above 200 Hz is caused by measurement noise.
  - □ MC d: The measurement of the sound pressure response has been performed in the near field of the speaker which is best practice for low frequencies. For high frequencies significant deviations exist between the far field and near field sound pressure due to the complex directivity.
- Step 15: In the same operations 3a DIS SPL Harmonics and 3b SIM all nonlinearities open the result window "2nd Harmonic,%)" showing the 2<sup>nd</sup> order distortion as relative components and find the frequency range where the 2<sup>nd</sup> Harmonic at a stimulus of 6 V is smaller than at a stimulus of 3 V.

- **QUESTION 17:** What causes the decrease of the  $2^{nd}$ -order distortion for rising voltages at lower frequencies  $(f < f_s)$ ?
  - □ MC a: The 2<sup>nd</sup>-order distortion is reduced at higher amplitudes because the generated dc displacement (which is positive) shifts the coil to the force factor maximum and reduces the asymmetry of the force factor characteristic dynamically.
  - MC b: The  $2^{nd}$ -order distortion is reduced at higher amplitudes because the generated dc displacement (which is positive) shifts the coil to the softer side of the suspension (see  $K_{ms}(x)$  curve in 2nd 1a LSI Clim 50%) and reduces the asymmetry of the stiffness of the suspension dynamically.
  - □ MC c: The compression of the fundamental displacement reduces the 2<sup>nd</sup>-order distortion at higher voltages.
- Step 16: Select the operation 3c SIM Kms(x) only, open the result window "Fundamental + Harmonics" and compare the frequency response of the  $2^{nd}$  Harmonic and  $3^{rd}$  Harmonic generated by the  $K_{ms}(x)$  nonlinearity with the distortion simulated by 3b SIM all nonlinearities considering the contribution of all nonlinearities.

# **QUESTION 18:** Is the harmonic distortion above 300 Hz caused by the $K_{\text{ms}}(x)$ nonlinearity?

- □ **MC a:** No, the  $K_{\text{ms}}(x)$  nonlinearity is not the cause of the 2<sup>nd</sup>-order distortion above 300 Hz because the 2<sup>nd</sup>-order distortion generated by the  $K_{\text{ms}}(x)$  decays by approximately 24 dB per octave above resonance frequency.
- □ **MC b:** No, the  $K_{\text{ms}}(x)$  nonlinearity is not the cause of the 3<sup>rd</sup>-order distortion above 300 Hz because the 3<sup>rd</sup>-order distortion generated by the  $K_{\text{ms}}(x)$  decays by approximately 36 dB per octave above resonance frequency.
- □ MC c: Yes, the  $K_{\rm ms}(x)$  nonlinearity is the cause of the 2<sup>nd</sup>-order distortion above 300 Hz because the 2<sup>nd</sup>-order distortion generated by the  $K_{\rm ms}(x)$  is almost constant versus frequency.
- □ MC d: Yes, the  $K_{\text{ms}}(x)$  nonlinearity is the cause of the 3<sup>rd</sup>-order distortion above 300 Hz because the 3<sup>rd</sup>-order distortion generated by the  $K_{\text{ms}}(x)$  is almost constant versus frequency.
- Step 17: Select the operation 3d SIM Bl(x) only, open the result window "Fundamental + Harmonics" and compare the frequency response of the  $2^{nd}$  Harmonic and  $3^{rd}$  Harmonic generated by the Bl(x) nonlinearity with the harmonic distortion simulated by 3b SIM all nonlinearities considering the contribution of all nonlinearities.

#### **QUESTION 19:** Is the harmonic distortion above 400 Hz caused by the Bl(x) nonlinearity?

- MC a: No, the  $2^{nd}$ -order distortion above 400 Hz is not generated by the Bl(x) nonlinearity because it decreases by approximately 12 dB per octave at higher frequencies.
- $\square$  MC b: No, the 3<sup>rd</sup>-order distortion above 400 Hz is not generated by the Bl(x) because it decreases by approximately 24 dB per octave at higher frequencies.
- $\square$  MC c: Yes, the 2<sup>nd</sup>-order distortion above 400 Hz is generated by the Bl(x) nonlinearity because it decreases by approximately 6 dB per octave at higher frequencies.
- $\square$  MC d: Yes, the 3<sup>rd</sup>-order distortion above 400 Hz is generated by the Bl(x) nonlinearity because it decreases by approximately 6 dB per octave at higher frequencies.
- Step 18: Select the operation 3e SIM L(x) only, open the window "Fundamental + Harmonics" and compare the frequency response of the  $2^{nd}$  Harmonic and  $3^{rd}$  Harmonic generated by the L(x) nonlinearity with the harmonic distortion simulated by 3b SIM all nonlinearities considering the contribution of all nonlinearities.

#### **QUESTION 20:** What does the comparison reveal?

- $\square$  MC a: The 2<sup>nd</sup>-order harmonic distortion generated by the L(x) nonlinearity is maximal above the resonance frequency  $(f_s)$  but decreases slowly by approximately 3 dB per octave to higher frequencies. Those kinds of distortions are mostly generated by the reluctance force which is proportional to the squared electrical input current.
- $\square$  MC b: The 3<sup>rd</sup>-order harmonic distortion generated by the L(x) is very small (>50 dB below the fundamental) and negligible.
- $\square$  MC c: The L(x) nonlinearity of the transducer under test is not a dominant source of  $2^{nd}$ -order harmonic distortion.
- Step 19: Select the operation  $\bigcirc$  3f SIM L(i) only, open the result window "Fundamental + Harmonics" and compare the frequency response of the  $2^{nd}$  Harmonic and  $3^{rd}$  Harmonic generated by the L(i) nonlinearity with the harmonic distortion simulated by  $\bigcirc$  3b SIM all nonlinearities considering the contribution of all nonlinearities and the linear modelling in  $\bigcirc$  2b SIM linear.

#### **QUESTION 21:** What does the comparison reveal?

- $\square$  MC a: The 2<sup>nd</sup>-order distortion generated by the L(i) nonlinearity are almost constant at higher frequencies.
- $\square$  MC b: The harmonic distortion generated by the L(i) nonlinearity are negligible at low frequencies below resonance frequency.
- □ MC c: The harmonic distortion generated by L(i) is higher than the harmonic distortion generated by Bl(x) and  $K_{ms}(x)$  at high frequencies  $(f > 5f_s)$ .
- $\square$  MC d: The harmonic distortion generated by L(i) fall by 12 dB per octave above resonance frequency.
- Step 20: Select the operation 3g SIM Doppler only and compare the result windows "Fundamental + Harmonics" and "Compression" with the corresponding nonlinear symptoms of the simulation 3b SIM all nonlinearities considering the contribution of all nonlinearities.

#### **QUESTION 22:** What does the comparison reveal?

- □ **MC a:** The Doppler Effect produces small 2<sup>nd</sup> order harmonic distortion.
- $\square$  MC b: The 3<sup>rd</sup> order harmonic generated by the Doppler Effect is negligible.
- □ **MC c:** Doppler Effect generates no compression of the fundamental.
- Step 21: Compare the  $2^{nd}$ -order harmonic distortion at resonance frequency ( $f_s = 82 \text{ Hz}$ ) in the result window **2nd Harmonic**, % of simulations **3b-3g** summarized in the object **3j SIM comparison**.
- **QUESTION 23:** What is (are) the dominant cause(s) of the 2<sup>nd</sup>-order harmonic distortion at resonance which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{ms}(x)$
  - $\square$  **MC b:** Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  **MC d:** Inductance L(i)
  - □ **MC e:** Doppler Effect
- Step 22: Compare the  $3^{rd}$ -order harmonic distortion in the result window "3rd Harmonics, %" in simulations 3b-3g at resonance frequency ( $f_s = 82 \text{ Hz}$ ) considering each nonlinearity separately. The calculated distortion curves are copied into object 3j SIM comparison to simplify the comparison.

- **QUESTION 24:** What is (are) the dominant cause(s) of the 3<sup>rd</sup>-order harmonic distortion at resonance which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{ms}(x)$
  - $\square$  MC b: Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  **MC d:** Inductance L(i)
  - □ MC e: Doppler Effect
- 9.2 Intermodulation Distortion Simulations
- Step 23: Open the result window "2nd Intermod, %" in operation 4a DIS SPL IMD (bass sweep) and compare the 2<sup>nd</sup>-order intermodulation distortion with the results of the simulation 4b SIM all nonlinearities considering the contribution of all nonlinearities.
- Step 24: Inspect the  $2^{nd}$ -order intermodulation distortion in the result window "2nd Intermod, %" in operations 4c-4g considering each nonlinearity separately. The distortion curves are copied into operation 4i SIM comparison to simplify the comparison.
- **QUESTION 25:** Which nonlinearity contributes significantly to the 2<sup>nd</sup>-order intermodulation distortion which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{\text{ms}}(x)$
  - $\square$  MC **b:** Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  **MC d:** Inductance L(i)
  - □ MC e: Doppler Effect
- Step 25: Inspect the  $3^{rd}$ -order intermodulation distortion in the result window "3rd, Intermod, %" in operations 4c-4g considering each nonlinearity separately. The calculated distortion curves are copied into operation 4i SIM comparison to simplify the comparison.
- **QUESTION 26:** Which nonlinearity contributes significantly to the 3<sup>rd</sup>-order intermodulation distortion which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{\text{ms}}(x)$
  - $\square$  **MC b:** Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  **MC d:** Inductance L(i)
  - □ MC e: Doppler Effect
- **QUESTION 27:** Why are the intermodulation distortions generated by the  $K_{ms}(x)$  nonlinearity small?
  - MC a: The intermodulation distortion measurement uses a two-tone signal. The low-frequency tone  $f_1$  generates sufficient displacement for  $f_1 < f_s$  and causes significant variation of the nonlinear stiffness  $K_{\rm ms}(x)$  and harmonics of  $f_1$ . However, the high-frequency tone  $f_2 = 900 \, {\rm Hz}$  generates only low displacement and cannot produce significant intermodulation components.
  - □ MC b: The transducer in 1a LSI Clim 50% has a relatively linear stiffness and produces low distortion.
- Step 26: Compare the distortion in result window "3rd Intermod, %" in operations 4d SIM Bl(x) only neglecting the nonlinear suspension with the corresponding distortion in operations 4h SIM Kms(x)+Bl(x) only considering the suspension nonlinearity.

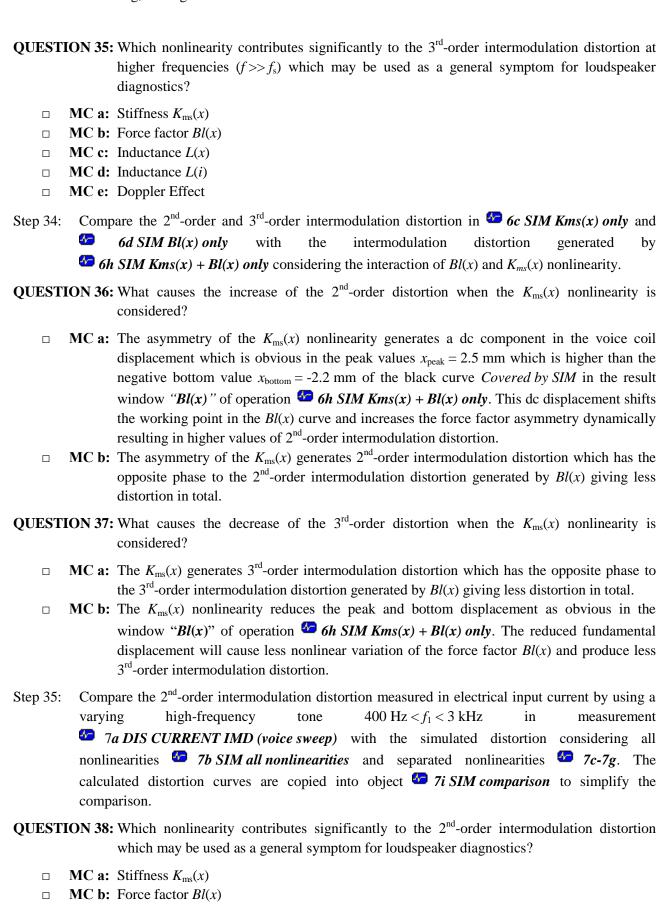
**QUESTION 28:** Why does the  $K_{ms}(x)$  nonlinearity <u>reduce</u> the generation of the intermodulation distortion?

- $\square$  MC a: The nonlinear stiffness  $K_{ms}(x)$  causes a compression of the fundamental component in voice coil displacement. If the displacement is reduced the Bl(x) nonlinearity generates less intermodulation distortion.
- $\square$  MC b: The intermodulation distortion generated by  $K_{\text{ms}}(x)$  compensates for the Bl(x) distortion.
- Step 27: Compare the intermodulation distortion in 4e 4e SIM L(x) only and 4e 4f SIM L(i) only.

**QUESTION 29:** What causes the differences in the intermodulation distortion generated by L(x) and L(i)?

- $\square$  MC a: The intermodulation distortion generated by L(i) have a local minimum when the bass tone  $f_1$  excites the transducer at the resonance frequency ( $f_s = 82 \text{ Hz}$ ) where voice coil current is minimal and the electrical input impedance is maximal.
- **MC b:** The intermodulation distortion generated by L(x) nonlinearity depends on the voice coil displacement and vanishes when the bass tone  $f_1$  has passed the resonance frequency  $f_s$  and produces less displacement.
- Step 28: Open the operation 5a DIS CURRENT IMD (bass sweep) and 5b SIM all nonlinearities. Compare the measured and simulated intermodulation distortion in result windows "2nd Intermod, %" found in the electrical input current. Inspect the contribution of each nonlinearity in following simulation 5b-5g considering each nonlinearity separately. The calculated distortion curves are copied into operation 5i SIM comparison to simplify the comparison.
- **QUESTION 30:** Which nonlinearity contributes significantly to the 2<sup>nd</sup>-order intermodulation distortion in the input current which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{\text{ms}}(x)$
  - $\Box$  **MC b:** Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  MC d: Inductance L(i)
  - □ MC e: Doppler Effect
- Step 29: Select operations 6a DIS SPL IMD (voice sweep) and 6b SIM all nonlinearities generated in the sound pressure output by using a bass tone at fixed frequency  $f_2 = 20$  Hz and a voice tone  $f_1 > 400$  Hz. Compare the measured and simulated  $2^{nd}$ -order and  $3^{rd}$ -order intermodulation distortion in the result window "2nd Intermod, %" and "3rd Intermod, %". There is a good agreement over a wide frequency range but the measurement reveals much more intermodulation distortion at a particular frequency, 1.9 kHz, which is not predicted by the simulation. Open operation 1b Linear parameter Measurement and view the impedance response at 1.9 kHz in result window "Impedance Magnitude". Open operation 1c CAL Scanner Result and open the result Curve 1 showing the SPL Decomposition. View the curve Acceleration Level and Anti Phase component at 1.9 kHz.

**QUESTION 31:** Which loudspeaker nonlinearities can cause this kind of distortion?


- MC a: The first natural frequency of a break-up mode on the cone is not considered in the simulation. The cone-surround system breaks up at 1.9 kHz and there is a first maximum in the total acceleration level and a significant increase of the Anti-Phase Component. This mode also generates a small peak in the electrical input impedance. However, this natural frequency of this mode depends on the voice coil displacement generated by the bass tone  $f_2$ . The variation of the mode causes an intermodulation of the voice tone  $f_1$ .
- $\square$  MC b: Insufficient modelling of the inductance nonlinearity L(x).
- □ MC c: Insufficient modelling of the Doppler distortion.

- Step 30: Compare the distortion in result window "2nd Intermod, %" of 6b SIM all nonlinearities with the simulated distortion generated by separated nonlinearities as shown in operation 6c-6g. The calculated distortion curves are copied into operation 6i SIM comparison to simplify the comparison.
- **QUESTION 32:** Which nonlinearity contributes significantly to the 2<sup>nd</sup>-order intermodulation distortion which may be used as a general symptom for loudspeaker diagnostics?
  - $\square$  MC a: Stiffness  $K_{ms}(x)$
  - $\square$  **MC b:** Force factor Bl(x)
  - $\square$  MC c: Inductance L(x)
  - $\square$  **MC d:** Inductance L(i)
  - □ MC e: Doppler Effect
- Step 31: View the frequency response of the  $2^{nd}$ -order and  $3^{rd}$ -order intermodulation distortion in the operation 6c *SIM* 6c *SIM*
- **QUESTION 33:** Why do the intermodulation distortions generated by  $K_{ms}(x)$  decay with frequency  $f_1$ ?
  - □ MC a: The nonlinear restoring force  $F_r = K_{ms}(x)x$  depends on displacement x only. While the bass tone  $f_2 = 20$  Hz generates high variation of the stiffness  $K_{ms}(x)$  the displacement of the voice tone decreases by 12 dB per octave to higher frequencies.
  - □ MC b: The electrical input impedance rises to higher frequencies and reduces the input current at higher frequencies.
- Step 32: View the frequency response of the  $2^{nd}$ -order and  $3^{rd}$ -order intermodulation distortion in the operation 6d SIM Bl(x) only considering the force factor nonlinearity only.
- **QUESTION 34:** Why is the magnitude of the intermodulation distortions generated by force factor nonlinearity Bl(x) independent of the frequency of voice tone  $f_1$ ?
  - **MC a:** The intermodulation distortions are generated by the electro-dynamical driving force F = Bl(x)i which depends on displacement x and current i. The bass tone  $f_2 = 20$  Hz generates the displacement x, which varies the force factor Bl(x) and modulates the electrical input current i. Since the voice tone generates high values of current i at higher frequencies  $f_1 > f_s$ , the intermodulation distortions are almost independent of the frequency  $f_1$ .
  - **MC b:** The intermodulation distortions are generated by the nonlinear damping force  $F = (Bl(x))^{2*}v/R_e$  which is a second nonlinear effect of Bl(x)-nonlinearity which depends on displacement x and velocity v. The velocity and displacement are constant at higher frequencies  $(f >> f_s)$ .
- Step 33: Compare the distortion in result window "3rd Intermod, %" of 6b SIM all nonlinearities with the simulated distortion generated by separated nonlinearities as shown in operation 6c-6g. The calculated distortion curves are copied into operation 6i SIM comparison to simplify the comparison.

**MC c:** Inductance L(x)

**MC d:** Inductance L(i)

MC e: Doppler Effect



# **10 Performing Measurements**

If the KLIPPEL measurement system is available it is recommended to investigate a real transducer with a resonance frequency  $f_s < 200$  Hz (woofer). However, this part is optionally and is focused on measurement and simulations to develop practical skills and experiences.

#### 10.1 Measurement of Nonlinear Parameters (LSI)

Later on, the SIM operations require linear, nonlinear and thermal parameters. These can be measured with and imported from an LSI operation.

Use the provided data in measurement object 8 Exercise or perform a measurement on a loudspeaker.

Step 36: Run the LSI measurement to measure the linear and nonlinear parameters of the transducer.

# 10.2 Measurement of DC displacement (DIS)

The simulation module SIM and the measurement module DIS use the same stimulus and perform the same signal analysis of the predicted and measured data, respectively. This simplifies the evaluation of the simulation.

Use the provided data in measurement object 8 Exercise or perform a measurement on a loudspeaker

- Step 37: Create a new DIS operation by using the template DIS X fundamental, DC.
- Step 38: Open property page *Stimulus* and select *Harmonics* in *Mode* and specify the frequency and voltage considering the particularities of the transducer.
- Step 39: Open property page *Protection*. Disable *Voice coil temperature Monitoring*.
- Step 40: Open property page *Input*. Select *X* (*Displacement*) in group *Y2* (*Channel 2*) and *Off* in group *Y1* (*Channel 1*).
- Step 41: Open property page *Display*. Select *Displacement X* in *State signal* and *2D plot versus f1* in group Plot style.
- Step 42: Run the DIS Measurement.

#### 10.3 Simulate all nonlinearities

- Step 43: Create a new operation SIM by pressing *New operation* in the dB-Lab toolbar. Rename this operation "SIM All Nonlinearities".
- Step 44: Open property page *Im/Export* in the LSI and press *Export to clipboard*. Open property page *Im/Export* in the SIM and press *Import from clipboard*.
- Step 45: Open property page *Im/Export* in the DIS measurement operation *3a DIS X Fundamental*, *DC* and press *Export to clipboard* to export the measurement setup (e.g. frequency points) from the DIS measurement to the clipboard. Open the property page *Im/Export* in the SIM and press *Import fom clipboard*.
- Step 46: In property page *Transducer* enable all nonlinearities by setting all checkboxes.
- Step 47: Start the SIM operation and compare the predicted and measured curves in the window *DC Component*. If no dc component is displayed, open property page *Display* and select *X cone displacement* at parameter *State signal*.

# 10.4 Simulate only one nonlinearity

- Step 48: Duplicate the previous SIM operation by pressing the *Duplicate* button in the dB-lab toolbar or use the menu. Rename the operation (e.g.  $SIM \ Bl(x) \ only$ ). Open the property page *Transducer* and enable only one checkbox (e.g. Bl(x)) and disable all other checkboxes to investigate the effect of one nonlinearity. Start the SIM operation and compare the dc displacement considering a single nonlinearity with the dc displacement in operation *SIM All nonlinearities*.
- Step 49: Repeat the last step for other nonlinearities (e.g. stiffness  $K_{ms}(x)$ ). Investigate which nonlinearity generates the largest contribution to the dc displacement.

#### 10.5 Simulate without *BI* offset

The *Bl* asymmetry is caused by the rest position of the voice coil and by the magnetic field. The simulation tool SIM makes it possible to generate an improved virtual transducer having the voice coil at the optimal rest position.

- Step 50: Duplicate the operation "SIM All Nonlinearities" and rename this operation "SIM Coil offset compensated"
- Step 51: Save the original shape of the Bl(x)-curve by copy and paste to the same window (or select duplicate curve in the right mouse menu).
- Step 52: Open the property page Transducer and put the cursor on the nonlinear parameter Bl(x) close to the checkbox. Press the button  $Edit\ curve$  and select the editor page REGULAR. In section Shift, press the button Center and see the value of the voice coil shift in mm.
- Step 53: Start the simulation and compare dc component generated by virtual transducer "SIM Coil offset compensated" with the dc component of the original transducer "SIM All Nonlinearities".
- Step 54: Compare the dc displacement in the simulation "SIM Coil offset compensated" with the predicted dc displacement in the simulations considering one nonlinearity only (e.g. SIM Kms(x) only). Which nonlinearity provides the highest contribution to the dc displacement in the virtual loudspeaker having the voice coil at the optimal rest position.

#### 10.6 Root Cause Analysis

The simulation tool SIM is perfectly suited to root cause nonlinear symptoms. 8 *Exercise* shows a comprehensive measurement object for analysis. When working through the steps please always verify that the simulation is valid, by checking that the amplitude of the peak/bottom waveform of the simulation matches the peak/bottom amplitude of the measurement.

- Step 55: Open Measurement Operation 8 Exercise 3a DIS X Fundamental, DC and find out, what is the dominant cause for dc generation below resonance frequency, at resonance frequency and above resonance frequency
- Step 56: Open Measurement Operation 8 Exercise 4b DIS SPL Harmonics and find out, what is the dominant cause for generation of  $2^{nd}$  order harmonic distortion
- Step 57: Open Measurement Operation 8 Exercise 4b DIS SPL Harmonics and find out, what is the dominant cause for generation of  $3^{rd}$  order harmonic distortion
- Step 58: Open Measurement Operation 8 Exercise 4c DIS IM Dist. (bass sweep) P and find out, what is the dominant cause for generation of  $2^{nd}$  order Intermodulation Distortion
- Step 59: Open Measurement Operation 8 Exercise 4c DIS IM Dist. (bass sweep) P and find out, what is the dominant cause for generation of  $3^{rd}$  order Intermodulation Distortion

Step 60: Open Measurement Operation 8 Exercise – 4e DIS IM Dist. (voice sweep) P and find out, what is the dominant cause for generation of  $2^{nd}$  order Intermodulation Distortion

Step 61: Open Measurement Operation 8 Exercise – 4e DIS IM Dist. (voice sweep) P and find out, what is the dominant cause for generation of  $3^{rd}$  order Intermodulation Distortion

# 11 Further Literature

User Manual for the KLIPPEL R&D SYSTEM – Simulation 2

User Manual for the KLIPPEL R&D SYSTEM – Transfer Function

User Manual for the KLIPPEL R&D SYSTEM – 3D Distortion Measurement

User Manual for the KLIPPEL R&D SYSTEM – Large Signal Identification

Specification S3 Simulation Version 2 (SIM):

 $\underline{http://www.klippel.de/fileadmin/klippel/Bilder/Our\_Products/R-D\_System/PDF/S3\_SIM\_Version\_\%202.pdf}$ 

Paper Prediction of Speaker Performance at High Amplitudes:

http://www.klippel.de/fileadmin/klippel/Files/Know\_How/Literature/Papers/Prediction\_of\_speaker\_perform ance at high amplitudes 01.pdf

Application Note AN 21 Reduce distortion by shifting Voice Coil:

http://www.klippel.de/fileadmin/klippel/Files/Know\_How/Application\_Notes/AN\_21\_Bl\_Shift.pdf